(4) b. The Moon: A Closer LookThe View Through the Telescope
Giovanni Riccioli in 1651 named the more prominent features after famous astronomers, while the large dark and smooth areas he called "seas" or "maria" (singular "mare," mah-reh). Some of the names he used for the Moon's crater are of persons discussed in "Stargazers"--Tycho (distinguished by bright streaks that radiate from it), Ptolemy ("Ptolemaeus"), Copernicus, Kepler, Aristarchus, Hipparchus, Erathosthenes; Meton and Pythagoras are on the edge, near the northern pole. Late-comers who lived after the 17th century had to make do with left-overs: the craters Newton and Cavendish are at the southern edge of the visible disk, Goddard and Lagrange too are near the edge. Also, "Galilaei" is a small undistinguished crater (because of Galileo's banishment?). However, since the Russians were the first to observe the rear side of the Moon, a prominent crater there bears the name of Tsiolkovsky, who at the end of the 19th century promoted the idea of spaceflight.
The Craters
|
We now know that the impact explanation was right. The craters are round because at the enormous velocities with which meteorites arrive, the impact resembles a local explosion, and the signature of the impact is determined by the energy released rather than by the momentum transmitted.
Part of the evidence has come from the nicely rounded impact remnants found on Earth, e.g. Meteor Crater (Canyon Diablo) in Arizona and Manicougan lake in Canada, in northern Quebec (picture on left), which is about 100 km (60 miles) wide and 214 million years old. Note that rather than having a pit in its center, the Manicougan lake has a round island. After the impact, the land rose again to the level of its surroundings, pushed by fluid pressure of the material below it, which acts like a viscous fluid and tries to establish equilibrium between the different loads which it supports. Other solid bodies of the solar system also diplay round craters. On the large ice-covered moons of Jupiter, the return to equilibrium is much more pronounced, because ice sags and flows much more readily than rock. Those moons display "palimpsest" craters which are merely surface markings, because as time passed, the walls which originally existed sagged onto the flat surface.
|
The Airless MoonIn the centuries after Galileo's discoveries, the Moon was extensively studied by astronomers using telescopes. One thing soon became clear: it had no atmosphere. When a star was eclipsed by the Moon, it vanished suddenly and its light showed no refraction or absorption by an atmosphere.Why? By the laws of motion, the Moon orbits not the center of the Earth, but the center of gravity of the Earth and Moon (this will be discussed in section #11a, and the center of gravity is defined in section #25). The location of that point allows astronomers to deduce the mass of the Moon, and from that, the pull of the Moon's gravity. At the surface of the Moon, it turned out, gravity is only 1/6 as strong as at the surface of the Earth. Gravity is important for the retention of an atmosphere. It holds an atmosphere down, while heat is what can make it escape. Heat is atomic or molecular motion. In a hot solid or liquid, it can be viewed as a shaking motion of atoms or molecules around their average position, like the rustling of leaves in a wind. The higher the temperature, the more vigorous the motion, until the material boils or evaporates, at which point its particles shake loose altogether. In a gas atoms and molecules fly around randomly, colliding constantly (if the gas is as dense as it is in the atmosphere), and their collisions lead to a very good explanation ("the kinetic theory of gases") of the observed properties of a gas. The average velocity of a gas molecule depends on the temperature of the gas, and at room temperature it is comparable to that of the speeding bullet, quite below the "escape velocity" needed for escaping Earth's gravity. However, that is just an average: actual velocities are expected to be distributed around that average, following the "Maxwellian distribution" first derived by James Clerk Maxwell, whom we meet again in the discovery of the three color theory of light (section #S-4) and the prediction of electromagnetic waves (section #S-5). According to that distribution, a few molecules always move fast enough to escape, and if they happen to be near the top of the atmosphere, moving upwards and and avoiding any further collisions, such molecules would be lost. For Earth, their number is too small to matter, but with the Moon, having only 1/6 of the surface gravity, it can be shown that any atmosphere would be lost within geological time. The planet Mercury, only slightly larger, also lacks any atmosphere, while Mars, with 1/3 the Earth's surface gravity, only retains a very thin atmosphere. Water evaporates easily and once in gas form, is quickly lost by the same process. That suggested the "maria" could not possibly be oceans, though their name remained. They actually turned out to be basaltic flows, hardened lava which long ago flowed out of fissures on the Moon; no present-day volcanism on the Moon has been reliably identified. The vast majority of craters probably date back to the early days of the solar system, because the lava of the maria has very few craters on it, suggesting it flooded and obliterated older ones. The picture of a dry Moon was reinforced by Moon rocks brought back by US astronauts. Earth rocks may contain water bound chemically ("water of hydration"), but not these. Water, of course, would be essential to any human outpost on the Moon. Yet small amounts of water may still exist, brought by comets which occasionally hit the Moon. All this water is sure to evaporate in the heat of the collision, but some of it may re-condense in deep craters near the Moon's pole, which are permanently in the shade and therefore extremely cold. Observations by the "Clementine" spacecraft suggest that one such crater may indeed contain a layer of ice.
|
In the Space AgeFrom the beginning of spaceflight, the Moon was a prime target, but this chapter in space exploration is too long to be covered here in any detail. The first spacecraft to reach the Moon were Luna 1, 2 and 3 of the Soviet Union, in 1959. Of these, Luna 3 rounded the Moon, took photographs of the far side which is not seen from Earth, and later scanned and transmitted those images (on the right); unfortunately, their quality was poor. In the decade that followed, 19 other Soviet missions were aimed at the Moon.In 1970 a Soviet spacecraft landed and returned a rock sample, and later that year a remotely controlled "Lunokhod" vehicle was landed, exploring its surroundings for nearly a year. Other sample returns and Lunokhods followed, the series ending in 1976. However, failures marked tests of a large rocket developed for human Moon flights, ending any plans of manned lunar exploration by the Soviet Union. Early attempts by the US to send unmanned spacecraft to the Moon (1958-64) either failed or returned scanty data. In July 1964, however, Ranger 7 returned clear TV pictures of its impact on the Moon, as did Rangers 8 and 9. Of the 7 "soft landers" in the "Surveyor" series (1966-8), 5 performed well and sent back data and pictures. In November 1969, after Apollo 12 landed 500 feet (160 meters) from the "Surveyor 3" lander, astronauts retrieved its camera and brought if back to Earth. In addition to the Surveyor project, 5 lunar orbiters photographed the Moon and helped produce accurate maps of its surface. On May 25, 1961, about one month after Russia's Yuri Gagarin became the first human to orbit the globe, US president John F. Kennedy proposed to the US Congress "that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to Earth. " The Apollo missions followed, with Apollo 8 rounding the Moon in 1968 and Apollo 11 finally landing there, on July 20, 1969. Five other lunar landings followed, the last of them in December 1972. Only Apollo 13 failed to land, its crew members narrowly escaping with their lives after an explosion aboard their craft on the way to the Moon.
Achievements of "Project Apollo."
|
No humans have visited the Moon from 1972 until now, but some orbital missions have studied the Moon's magnetic field as well as X-ray and gamma-ray emissions, from which some variations of the surface composition could be inferred. The Moon was found to have no global magnetic field like the Earth, but its surface was weakly magnetized in some patches. Molten rock can become permanently magnetized if it solidifies in the presence of an external magnetic field, suggesting that in some ancient era the Moon, like Earth now, had a molten metallic core in which electric currents generated a magnetic field. Somewhat similar observations, leading to a similar conclusion, were made on Mars in 1998. There is little doubt that the future will see further lunar exploration, though a "lunar base" is probably far off. Astronomical and other observations can readily be made from Earth orbit, and providing life support on the Moon is not easy. Such a base will probably become attractive only after ways are developed for utilizing local lunar materials for construction and for fuel.
|
Exploring FurtherEntire books about "Project Apollo" can be found of the web. Some good ones:
A site about impact craters on Earth.
|
Next Stop: #5. Latitude and Longitude
|Astro Net ® Home Page | Kanishkas Home Page|
Copyright © 01/2000 Kanishka H. Lankatillake